Associate in Applied Science-Transfer
Environmental Technologies and Sustainable Practices- Water Quality Technology Emphasis
92 credits

The Associate in Applied Science (AAS) degree in Environmental Technologies and Sustainable Practices: Water Quality Technology is a comprehensive technical degree that introduces students to the functions, operation, and management of systems and facilities that supply water, treat and deliver potable water, treat wastewater, and control stormwater. It includes topics related to new and existing technologies, laws and regulations, professional roles and responsibilities, and the relationship between water quality and sustainability.

A growing population will increase demands for water and wastewater treatment services. Individuals with formal schooling in water quality and wastewater technology will have an edge over other job seekers and both in employment advancement because of the increasing complexity of the technology. Typically, it may take five or more years to train a person to be a fully competent operator using traditional on-the-job training methods. This program will help jump start that process. At completion of this program, students will have the skills needed to become a valuable team member in any organization.

Upon successful completion of this degree a student will be able to:
• Understand patterns and make connections among different disciplines and schools of knowledge and to integrate studies with personal experience
• Learn actively and gain comprehensive understanding; to think critically, creatively, and reflectively in order to solve problems; to communicate with clarity and originality for personal growth and productive work; and to interact in diverse and complex environments and complicated, dynamic, and ambiguous situations
• Address savings and spending using terms and tools applicable in the commercial arena
• Design and execute environmentally sensitive and sustainable practices

GENERAL EDUCATION CORE COURSES

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Lec</th>
<th>Lab</th>
<th>Other</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL& 101T</td>
<td>English Comp I for Technical Writers</td>
<td>55</td>
<td>5.0</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>BIT 115</td>
<td>Introduction to Programming, or</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>MATH& 107T, or MATH&141, or MATH& 146</td>
<td>Math in Society with Technical Applications Precalculus I, or Introduction to Statistics, or Business Precalculus, or Symbolic Logic</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 147</td>
<td>Organization Behavior</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>PHIL& 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROGRAM REQUIREMENTS

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Lec</th>
<th>Lab</th>
<th>Other</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT 220</td>
<td>Project Management</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>CMST 105</td>
<td>Communication in Organizations</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>ETSP 101</td>
<td>Introduction to ETSP</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>ETSP 110</td>
<td>Conventional Energy Systems</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>ETSP 172</td>
<td>Intro to Wastewater Treatment Systems</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>ETSP 173</td>
<td>Wastewater Treatment: Liquid Phase</td>
<td>55</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
</tbody>
</table>
Students should choose three of the five-credit courses listed below for a total of 15 credits.

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Lec</th>
<th>Lab</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVS& 101</td>
<td>Intro to Environmental Science</td>
<td>44</td>
<td>22</td>
<td>5.0</td>
</tr>
<tr>
<td>ENVS 150</td>
<td>Themes and Methods in the Environmental Sciences,</td>
<td>55</td>
<td>0</td>
<td>5.0</td>
</tr>
<tr>
<td>ENVS 210</td>
<td>Ecology of the Puget Sound Bioregion,</td>
<td>44</td>
<td>22</td>
<td>5.0</td>
</tr>
<tr>
<td>ENVS 220</td>
<td>Wetland Ecology and Conservation,</td>
<td>33</td>
<td>44</td>
<td>5.0</td>
</tr>
<tr>
<td>BIOL 120</td>
<td>Survey of the Kingdoms,</td>
<td>44</td>
<td>22</td>
<td>5.0</td>
</tr>
<tr>
<td>CHEM& 121</td>
<td>Introduction to Chemistry,</td>
<td>44</td>
<td>22</td>
<td>5.0</td>
</tr>
<tr>
<td>PHIL 243</td>
<td>Environmental Ethics and Sustainability</td>
<td>55</td>
<td>0</td>
<td>5.0</td>
</tr>
</tbody>
</table>